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Abstract

An effective method for real-time evaluation of confidence intervals associated to quantile ðLqÞ and
equivalent ðLeqÞ levels in environmental noise measurements is presented. The non-parametric surrogate
data (or bootstrap) method, is described here in its basic form, valid for independent and identically
distributed data, but is readily extendible to the treatment of dependent data. Application to actual
measurements are shown which illustrate the practical effectiveness of real-time error evaluation during
environmental monitoring.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In environmental noise measurements, a multitude of independent signals from different
sources (transportation, industries, etc.), quite possibly located in different places, contribute to
form the noise under analysis. Due to the uncorrelated nature of this multitude of acoustic sources
a statistical description of this noise is appropriate; this is somewhat different from the situation in
which a signal SðtÞ is combined with noise NðtÞ: In this latter case, the aim of a measurement
might be to determine the signal root mean square /SðtÞ2S and the noise is an unwanted
nuisance. However, in environmental noise measurements, the situation is reversed as it is the
noise component NðtÞ whose parameters are of interest, while the signal component SðtÞ is absent.
This interpretation leads to a model in which the observed noise ðN0ðtÞÞ is a particular realization
of a stochastic variable whose distribution can be characterized by some appropriate parameters.
It is common practice to express the properties of environmental noise distributions through the
use of evaluation indices such as equivalent sound level Leq and quantile levels Lq: The
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determination of the values of these parameters is the aim of this type of measurement; due to the
statistical nature of the model a particular measurement can only lead to an estimate of these
parameters whose true values are known only to Mother Nature. This statistical interpretation of
environmental noise measurements is consistent with international standards and many national
legislations which require quantitative estimates of the errors associated with a noise
measurement. Specifically, it is important to quantify the range in which a parameter might
vary with a specific likelihood; this is generally expressed by confidence intervals. Assigning a
probability p; the upper LðpÞsup and lower LðpÞinf limits of the confidence interval are determined
in such a way that the chance of obtaining a value for measurement of the parameter L; with a
value within this interval ½LðpÞinf ;LðpÞsup�; is p:

Most of the current instrumentation for field sound level measurements do not evaluate the
uncertainties inherent in the evaluation indices. These uncertainties intrinsic of the noise itself are
worth investigating not only in that international standards require their assessment but also as
this may lead to a deeper understanding of the structured features of the stochastic process
depicted by the observed noise measurement. Furthermore, by integrating the noise measurement
with real-time information on confidence limit intervals, this method may prove to be a valuable
aid in practical measurements where the assessment of error-trends may enable one to reduce
measurement times as well as revealing anomalous acoustic events.

Online quality test procedures have already been implemented for the determination of
confidence level limits of Leq and Lq indices [1], the approach being based on establishing a
relationship between the variance of a partitioned subset of the distribution and the first two
moments of the ‘‘crossing up’’ (and down) statistics obtained from the data-set values.

This paper describes a different approach, a simple bootstrap method, in which the data set
itself is used as a model of the distribution from which the confidence intervals for Leq and Ln are
determined. This implementation facilitates a numerically efficient procedure suitable for real-
time assessment of the intervals.

Statistical analysis of linear and non-linear time series through the use of bootstrap (also known
as surrogate data) methods has been the subject of many recent efforts. In particular, the problem
of determining confidence limit regions of time series data has gone through several refinements
since its first acceptance [2], particularly for what concerns the treatment of data that are dependent.
Initially, this was done by introducing subseries analysis in the block bootstrap [3] then with
autoregressive modelling in the sieve bootstrap method [4] which is particularly adapt in capturing
second order dependencies in the data set and effectively applied to confidence region estimation [5].
Perhaps the most versatile method [6] is that in which the bootstrap is performed in Fourier space so
that the spectral components of the signal are preserved in the surrogate realizations. Although the
straight bootstrap method described in this paper is not entirely appropriate when dealing with
dependent data [7], it serves as an initial attempt at producing a numerically efficient system which
can be quite easily modified in the future by using one of the aforementioned techniques.

2. Confidence intervals of sound level measurements

As described in the introduction, environmental noise very often occurs in the form of
randomly fluctuating sound signals. To quantitatively describe this phenomenon, noise indices
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such as the equivalent sound pressure level Leq and quantile levels Lq are widely used and these are
usually expressed in decibels (dB) relative to a reference pressure of 20 mPa: In practice, when
performing a measurement with a sound level meter, the acoustic sound pressure level pðtÞ is
transformed into a discrete set of equivalent levels LstðtiÞ given by

LstðtiÞ ¼ 20 log10

/jpðtiÞjSt

p0
; ð1Þ

where /jpðtiÞjSt denotes the time average of the absolute value of pðtÞ in the interval ½ti; ti þ t� and
p0 is the reference pressure. The duration of the interval t is one of the measurement parameters
typically lasting at least 1

8
of a second. Analogously, the equivalent level LeqðTÞ is the average

energy over a period of time T and is determined by evaluating Eq. (1) over this period of time
ðt ¼ TÞ: In practice, this is approximated by evaluating the average of the n data-set elements
/EðtiÞSt which encompass time T ðT ¼ ntÞ;

LeqE10 log10

1

n

X
10LstðtiÞ=10; ð2Þ

whereas, the quantile level LqðTÞ is the element in the set of LstðtiÞ exceeded by a fraction q (often
expressed as a percentage) of the elements which occur in T :

In general, an experiment designed to determine the value of a parameter Ltrue will do this by
applying an appropriate transformation to the measured data set D0: The value obtained for the
parameter L0 for this data set will probably differ from the true one due to the effect of errors
throughout the experiment chain and in the physical phenomenon under study. In most physical
experiments there will be a random component affecting the data set so that even repeating it
under identical stationary conditions, which can be viewed as re-extracting from the distribution
describing the physical measurement D; different data-set realizations Di will be formed. This
implies that L0 is simply an extraction from a set of possible values associated to the other possible
data-set realizations which could have been obtained. The distribution of L0 � Li is an estimate of
Ltrue � Li; very often, the best one available.

Taken together, the elements LstðtiÞ occurring in T form D0; while the index being analyzed, L;
is either LeqðTÞ or a specific LqðTÞ: Note that the transformations applied to D0 to obtain L are
intimately different in the two cases; in the latter case to obtain LqðTÞ a selection of an element of
D0 is performed, while in the former Eq. (2) is applied.

The significance, from a statistical point of view, of the values determined for these indices is
given in terms of confidence limits, and in order to evaluate these, the distribution of Ltrue � Li is
needed. In the case in which D has a finite variance and its elements are independent, the central
limit theorem assures that the distribution of their mean will tend to a Gaussian distribution as the
number of elements in D0 increases; this greatly simplifies the determination of the confidence
limits of LeqðTÞ through the use of the standard error [8]. However, the selection procedure
required to determine LqðTÞ will not necessarily converge quickly to a Gaussian distribution,
particularly for values of q near its upper and lower bounds, so that a different approach is
needed.

In order to tackle the problem of determining the confidence limits of quantile levels a method
more sophisticated than the standard error approach should be made. If an accurate picture of the
physical processes that occur during the measurement chain is available the latter can be

ARTICLE IN PRESS

F.A. Farrelly, G. Brambilla / Journal of Sound and Vibration 268 (2003) 167–175 169



determined through a Monte-Carlo simulation which synthesizes many runs of the experiment
with the corresponding data sets Ds

i from which their respective indices Ls
i can be evaluated.

However, this is in general a very difficult task to undertake.

2.1. Bootstrap method implementation

When little is known of the underlying physical process involved in the measurement chain a
modified version of the Monte-Carlo simulation technique, known as the bootstrap or surrogate
data method, can be of great use [9]. The key aspect of this technique is to perform the Monte-
Carlo simulation on the basis of the measured data set’s ðD0Þ discrete distribution, this being an
estimator of the actual data-set distribution Dtrue: An alternative description of this method can be
given by considering the cumulative of the data set D0 as the staircase function which is a best-
fitting function yðiÞ of D0’s distribution; the resultant chi-squared,

w2 	
Xn

i¼1

yi � yðiÞ
si

� �2

; ð3Þ

is of course 0. The mathematical model of Dtrue is this staircase function and it is used for the
Monte-Carlo simulation. This formulation requires that the measured data set be composed of
independent and identically distributed points (IID). In practice a synthesized data set Ds

i realized
by extracting randomly n times from the n elements of D0 so that each element can be drawn once,
more than once, or never. This procedure is repeated for each realization until a sufficient number
ðmÞ of synthesized data sets are obtained for the Monte-Carlo simulation. For each data set Ds

i

realization, the specific quantile level Li
qðTÞ (or equivalent level Li

eqðTÞ) is computed so that this
parameter’s distribution can be determined and from this its confidence limits can be found.

Fig. 1 shows the logical structure of an acoustic monitoring measurement in which the gray
colored elements represent the traditional phases and the white boxes are the additional phases
used in the bootstrap method’s implementation. The sound level meter (gray oval) feeds data to
an acquisition system which records the time series data set D0 (gray box) from which the
measurement parameters L0 are determined (gray box).
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(white boxes) required to determine confidence limits using the bootstrap implementation.
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The bootstrap method is used in order to calculate the confidence interval of the measurement
by analyzing the n elements of the data set acquired so far. This data is used as the estimate of the
distribution (white box) required by the Monte-Carlo method for creating the synthetic data sets
Ds

i ; an application written in the C programming language, implements the random extraction
from the elements in D0 creating m different data sets (small white boxes) each contains n
elements. The number of data sets m is determined by the probability p associated to confidence
limit interval so that

m ¼ intðK=pÞ; ð4Þ

where K is a pre-factor; as can be seen, the complexity of the algorithm grows inversely to the
probability level chosen. For each of these synthesized data sets the value of parameter being
analyzed Ls

i is determined resulting in a set of m elements (small white boxes) representing the
outcome of the Monte-Carlo realizations. In the case in which the equivalent level is the
parameter under analysis ðLs

i Þ; Eq. (2) is computed with the LstðtiÞ substituted by their synthesized
analogues, whereas, for quantile levels, a selection procedure is applied to the elements of Ds

i so as
to determine its value for the specific data set realization. In either case the complexity of the
parameter determination is linear with respect to the number of elements (OðnÞ; see Ref. [10]). The
final phase of the procedure (wide white box) determines the upper LðpÞsup or lower LðpÞinf

confidence limit by selecting the kth highest or lowest element from the m-element parameter set
Ls

i where k is determined by the probability p associated to confidence level p ¼ 2k=m: The width
of this interval ðDLðpÞÞ is just the difference between these two: DLðpÞ ¼ LðpÞsup � LðpÞinf :

3. Results

The potential of the surrogate data method for determining the confidence limits of the
equivalent and quantile levels is illustrated by showing examples both from synthesized data and
from actual measurements of road traffic noise. Once the confidence level probability p is chosen,
the upper (sup) and lower (inf) limits of the confidence interval are determined (by the procedure
outlined above) in such a way that the chance of finding the parameter, with a value within this
interval, is p:

In Table 1 the results of a Gaussian noise test are given in which 100 runs of synthesized noise,
were generated having a mean of 70 dB; a relative standard deviation of 0:1 and containing 500
samples. This data is converted into its Lst equivalent and processed as though it had been
acquired from a sound level meter. For each parameter its value, lower (inf) and upper (sup)
confidence limits, associated to a probability p ¼ 80% are given along with their standard
deviation ðDÞ for this sample set of runs. These results show excellent agreement between the
bootstrap method technique and the values expected by statistical theory.

These simulations were performed on a PC with an Athlon XP processorTM running at
1533 MHz on a Linux operating system using the gcc 2:96 compiler. Timings were obtained from
the average of 10 consecutive runs in which Lst values were read from a text file and four indices
together with their respective lower and upper limits were calculated (LðpÞ5; LðpÞeq; LðpÞ50 and
LðpÞ95 with p ¼ 80%). In the case of 500 points, 62 ms were required per run, whereas for 5000
points 597 ms were needed. In all cases, these values were obtained from the unix time command
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and indicated the total of user and system time for the process. Even in the case of a relatively
large set of points (5000) this modest computational time is compatible with real-time operation.

Data taken from real applications are analyzed next; the first case is taken from a time series
with fairly stationary conditions while the second will illustrate widely fluctuating noise. In Fig. 2
a typical environmental noise measurement is presented in the bottom graph (c) showing the
short-time equivalent level Lst acquired by the sound level meter (at a rate of 1 s�1) together with
the calculated running L05; Leq and L95 levels. The relatively small variations in these parameters
after the first 50 or so seconds is an indication of the time-independent nature of this data set.
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Fig. 2. (c) Short-time equivalent level Lst data set acquired by a sound level meter (at a rate of 1 s�1) together with the

calculated running L05; Leq and L95 levels. (b) Confidence interval for Leq determined by bootstrap and by standard

error DLse computed once the first 32 values are available; (a) the same shown for top 5% DL95:

Table 1

Gaussian noise test summary (100 runs)

Parameter Value7D inf7D sup7D Predicted

L95 69.2270.06 69.1670.06 69.2870.05 69.22

Leq 70.0070.02 69.9870.02 70.0370.02 70.00

L50 70.0170.02 69.9770.03 70.0470.03 70.00

L05 70.6770.03 70.6370.04 70.7270.04 70.66
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A pronounced peak in the Lst is visible at B1650 s while the arrow points to a noticeable dip at
B650 s:

The application of the bootstrap method for the determination of the confidence limit width
DL95 ðp ¼ 80%Þ of the 95th quantile level of this data, once 32 data points are available, results in
the solid line in the middle graph (b). The arrow indicates the moment in which the dip in the Lst

abruptly lowers the L95 level and noticeably increases the confidence interval width of this level. It
can be seen that this solid line assumes discrete values in DL95 due to the fact that the acquired Lst

are also discrete and the selection procedures used to determine the quantile confidence limits
in the bootstrap method guarantees that both LðpÞsup and LðpÞinf are elements of the original
data set.

The dashed line, also in this middle graph, shows the equivalent level’s confidence interval
determined directly by way of the standard error DLse: For comparison, this same interval,
calculated with the bootstrap method, is shown by the dotted line DLeq; clearly, the two curves are
very similar apart from a small noise effect in the latter. After the peak at B1650 s; the width as
calculated by the bootstrap method is slightly larger than that determined through the standard
error; as mentioned above, the latter method requires the data to be distributed normally and the
presence of this peak represents an outlier which is not correctly accounted for under this
hypothesis.

The top graph (a) in Fig. 2 corresponds to the confidence interval breadth of the parameter
measuring the level of the highest 5% of the signals. It is unperturbed by the dip in the Lst which
affected the DL95 but correctly changes at the moment in which the sharp peak occurs.

The effect caused by greatly fluctuating time series is considered next. The measurement site is
near a one-way throughway and is characterized by a quiet background with occasional vehicle
noise which show up as isolated peaks in the Lst:

In the lower graph of Fig. 3(b), the time series of the short-time equivalent levels Lst acquired by
the sound level meter, at a rate of 8 s�1; are shown together with the calculated running Leq; L95

and L05 levels. The upper graph (a) in this figure portrays the width of the confidence limit interval
DLeq corresponding to the running Leq in (b) and is calculated once the first 32 values of Lst ð4 sÞ
are available. An abrupt increase to 2.5 dB shows up after 29 s due to a peak in the Lst time series
and it decays slowly to 0:8 dB when a second, louder event presents itself at 97 s: The short decay
which follows, lasts just 10 s before a further event is encountered, from this point on DLeq settles
to a value of about 1.8 dB from where it decays very slowly reaching 0.7 dB at 360 s: Even though
17 other loud peaks can be counted they do not show up as distinct decays the way the first two
did. Referring to part (b) of the figure, the running Leq which is about 43 dB at 28 s; increases as
each peak is encountered and reaches 66.2 dB at the end of the 375 s over which the measurement
was made. The changes in L95 are small during the entire period and its final value of 39 dB
coincides with its first one; likewise, L05 remains practically stationary to close to its final value of
74 dB; once the 5th peak is reached.

4. Conclusions

A method for establishing the confidence limit interval of Leq and Lq parameters in real-time
environmental noise monitoring systems has been presented. Simulations using synthesized IID
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data have been performed, and performance characteristics were tested, indicating that it is
possible to determine the confidence intervals of four different indices of a 500 point data set at a
rate of about 16 times/s. Application to real-life data sets shows that the onset of infrequent
outliers abruptly increases the confidence interval of the appropriate quantile levels, unless their
occurrence has been sufficiently numerous.

The implementation of the bootstrap method described in the paper is, in a strict sense, capable
of dealing correctly only with IID data sets; however several methods of overcoming this
limitation are known and will be the subject of further investigation. Specifically, block, sieve and
Markov bootstrap methods can be considered as valid candidates as well as spectral surrogate
data selection techniques.
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